121 research outputs found

    RoboJam: A Musical Mixture Density Network for Collaborative Touchscreen Interaction

    Full text link
    RoboJam is a machine-learning system for generating music that assists users of a touchscreen music app by performing responses to their short improvisations. This system uses a recurrent artificial neural network to generate sequences of touchscreen interactions and absolute timings, rather than high-level musical notes. To accomplish this, RoboJam's network uses a mixture density layer to predict appropriate touch interaction locations in space and time. In this paper, we describe the design and implementation of RoboJam's network and how it has been integrated into a touchscreen music app. A preliminary evaluation analyses the system in terms of training, musical generation and user interaction

    Music Mixing Surface

    Get PDF

    Estimating the Number of Solutions of Cardinality Constraints through range and roots Decompositions

    Get PDF
    International audienceThis paper introduces a systematic approach for estimating the number of solutions of cardinality constraints. A main difficulty of solutions counting on a specific constraint lies in the fact that it is, in general, at least as hard as developing the constraint and its propaga-tors, as it has been shown on alldifferent and gcc constraints. This paper introduces a probabilistic model to systematically estimate the number of solutions on a large family of cardinality constraints including alldifferent, nvalue, atmost, etc. Our approach is based on their decomposition into range and roots, and exhibits a general pattern to derive such estimates based on the edge density of the associated variable-value graph. Our theoretical result is finally implemented within the maxSD search heuristic, that aims at exploring first the area where there are likely more solutions

    Delayed Decision-making in Real-time Beatbox Percussion Classification

    Get PDF
    This is an electronic version of an article published in Journal of New Music Research, 39(3), 203-213, 2010. doi:10.1080/09298215.2010.512979. Journal of New Music Research is available online at: www.tandfonline.com/openurl?genre=article&issn=1744-5027&volume=39&issue=3&spage=20

    Digitizing the txalaparta: computer-based study of a traditional practice

    Get PDF
    This article describes a software implementation dealing with the ancient Basque musical tradition of the txalaparta. The research is different from earlier studies of the txalaparta in that, by digitizing the instrument and its performance rules, we have had to formalize and make explicit conventions that hitherto have been tacit knowledge of improvisational practice. Analysis through software development is an unusual case of musicological analysis as it demands clarity and precision, and often requires multidisciplinary approaches to understand the studied subject. We have developed software in order to analyze and understand a practice that has received little musicological analysis. By expounding musical patterns and performers' behaviors that have hitherto been difficult to analyze, we reveal the social and cultural aspects of performance practice. The txalaparta is a two-performer instrument and the software produces txalaparta rhythms and plays along with a human player, while learning and adapting to the player's style. The system helps novices to explore the rules of the txalaparta and more-experienced performers to approach the instrument from a new perspective. In this research we have applied a user-centered approach, where feedback from players using the digital txalaparta was collected. This feedback allowed us to approach the reflective vision of txalaparta players and their thoughts on the results of our research

    Evolutionary multi-objective training set selection of data instances and augmentations for vocal detection

    Get PDF
    © Springer Nature Switzerland AG 2019. The size of publicly available music data sets has grown significantly in recent years, which allows training better classification models. However, training on large data sets is time-intensive and cumbersome, and some training instances might be unrepresentative and thus hurt classification performance regardless of the used model. On the other hand, it is often beneficial to extend the original training data with augmentations, but only if they are carefully chosen. Therefore, identifying a “smart” selection of training instances should improve performance. In this paper, we introduce a novel, multi-objective framework for training set selection with the target to simultaneously minimise the number of training instances and the classification error. Experimentally, we apply our method to vocal activity detection on a multi-track database extended with various audio augmentations for accompaniment and vocals. Results show that our approach is very effective at reducing classification error on a separate validation set, and that the resulting training set selections either reduce classification error or require only a small fraction of training instances for comparable performance

    Evaluation of Musical Creativity and Musical Metacreation Systems

    Get PDF
    The field of computational creativity, including musical metacreation, strives to develop artificial systems that are capable of demonstrating creative behavior or producing creative artefacts. But the claim of creativity is often assessed, subjectively only on the part of the researcher and not objectively at all. This article provides theoretical motivation for more systematic evaluation of musical metacreation and computationally creative systems and presents an overview of current methods used to assess human and machine creativity that may be adapted for this purpose. In order to highlight the need for a varied set of evaluation tools, a distinction is drawn among three types of creative systems: those that are purely generative, those that contain internal or external feedback, and those that are capable of reflection and self-reflection. To address the evaluation of each of these aspects, concrete examples of methods and techniques are suggested to help researchers (1) evaluate their systems' creative process and generated artefacts, and test their impact on the perceptual, cognitive, and affective states of the audience, and (2) build mechanisms for reflection into the creative system, including models of human perception and cognition, to endow creative systems with internal evaluative mechanisms to drive self-reflective processes. The first type of evaluation can be considered external to the creative system and may be employed by the researcher to both better understand the efficacy of their system and its impact and to incorporate feedback into the system. Here we take the stance that understanding human creativity can lend insight to computational approaches, and knowledge of how humans perceive creative systems and their output can be incorporated into artificial agents as feedback to provide a sense of how a creation will impact the audience. The second type centers around internal evaluation, in which the system is able to reason about its own behavior and generated output. We argue that creative behavior cannot occur without feedback and reflection by the creative/metacreative system itself. More rigorous empirical testing will allow computational and metacreative systems to become more creative by definition and can be used to demonstrate the impact and novelty of particular approaches
    • …
    corecore